*

AD=A04S 900

UNCLASSIFIED

MASSACHUSETTS UNIV AMHERST
DEVELOPMENT OF QUALITY LANGUAGES,(U)
OCT 77 H F LEDGARD

F/6 9/2

DAHCO“-T“-G-0139
ARO=12246,5=M

] P' IIIII||IIII||IIII|IIIII\IIIIIIIIIIIIIIIII\|IIIII|IIIII|IIIII|IIIII

END

DATE
FILMED

=T

poc

gulcidssilleg / -
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) &1 ~

READ INS C S
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
LN I EPORT NUMBER ; / 2. SOVT ACC NO| 3. REFI?IENT'S CATALOG NUMBER
< A (7

1 /Z 10046 r AR &)

% TITLE (and Subtitie) 5. TYPE OK-RERGAT-H-PERAOD COVERED
AT A / (L/ 7~ Fipai ?’epart ey
Development of Quality Languages, | {1 Jun Th - = Oct 77 . i

/ e T 6. PERFORMING ORG. aEPom-Wuusca

7. AUTHOR(e) 8. CONTRACT OR GRANT NU&ER(.)

‘) 7Y~ C =0 ,-; e 17
Henry F./ledgard DABCOU-T 0 P19 G 0173
el i e DAAG29. 76 G.polr'

AD A 045900

5. PERFORMING ORGANIZATION NAME AND ADDRESS T T T PROGRAN ELEMENT, PROJECT TASK
AREA & WORK UNIT NUNBE
University of Massachusetts //]
Amherst, !'assachusetts 01003 - D
1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE —
U. 5. Army Research Office 4//74 “Fet 77| =
Post Office Box 12211 (457 NUMBER OF PAGES
Research Triangle Park, NC 27709 9 i
14, MITORING_HQGENC! _NAME & ADDRESS(if different homICommlllnn Office) 1S. SECURITY CL ASS. (of this report)
l/ Wl B 7
/ ,I@P' it ’ ’ X 0—{ /' f Unclassified
HA OH 7: gL 51 7) 1
l 7_]7/ y o 0 B S8/ Sa. EESLASEIEFH‘ATION DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

The findings in this report are not to be construed =us an official i
Department, of the Army position, unless so designated by other authorized ?
documents.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Language design Computer programs
Quality software Programming languages
Formal definition

Human engineering

ABSTRACT (Continue on reverse side If necessary and ident!fy by block number)

Over the past decade the computer software area has faced severe problems over the
quality of software. Resulting systems have often been %gued with poor perfor-
mance, errors, and frequent expensive modifications. The re:earch ‘reported here [-
was directed at one key element in the production of softwareg,~ the programming
language. Three somewhat overlapping approacheq were explnrei (1) Lhe
development of desired properties in languages’ (2) jhe development of new definitibn
approaches and the®clarification of existing approaches; and (3) the emerging

FILE_COPY:

importance of the role of human factors in langvanre decign, + {!
b FORM - 7 o
- DD | jan 73 14735 €0iTion OF 1 NOV 88 15 OBSOLETE Unclassified ,Q o O JA00U o '

SECURITY CLASS'F!CATION OF THIS PAGE ('hon Data Bnuud)

= o T P BRI ge—assyarye. - Mo+

Final Report
on

DEVELOPMENT OF QUALITY LANGUAGES

Submitted To

U.S. Army Research Office
Durham, NJ

Principal Investigator:
Henry F. Ledgard

Duration:
June 1, 1974 to October 15, 1977

Contract Numbers:
DAHCO04-74~-G-0139
DAHCO04-75-G-0173
DAAG29-76-G-0216

Keywords: Language Design, Quality Software, Formal Definitionm,

s‘lJo

Human Engineering

Y

e e e el el el el el el el e bl el Y Y e A BEN R

S o o
— — faon |

ACKNOWLEDGMENT

I would like to express my appreciation to the Army Research

Office in supporting one of the most rewarding efforts I have

undertaken.
During the three years of grant support, I have been able

to work on some of the most critical problems in language design;
to integrate this work with the software quality group at Fort

Monmouth; to serve as a design consultant on the common language

effort; and to develop a recent concern for one - The most

critical factors in language design--that of humc :2ngineering.

All of these items were stimulated by this research contract,
and the personal support by the Army Research Office has been a

major factor in making the past three years a worthwhile period

for me.

A. PROBLEMS STUDIED

"We propose here to investigate the underlying structures
in the design of algorithmic programming languages, to integrate
and expand on the recent developments in software quality and
formal definition, and thereby to develop a set of new linguistic
structures for programming languages."

Quote taken from the original proposal
June, 1974

B. PEQPLE SUPPORTED: Major

Michael Marcotty, Frederic Richard, Andrew Singer

PEOPLE SUPPORTED: Minor

Randy Chow, Jon Hueras, Joseph Kasprzyk, Gary Madelung

C. LIST OF PUBLICATIONS: Final

1) Henry F. Ledgard
Production Systems: A Notation for Defining Syntax and
Translation
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, Volume SE-3(2),
March 1977, p. 105-124

g

2) Michael Marcotty, Henry Ledgard, and Gregor Bochmann
A Sampler of Formal Definitions
COMPUTING SURVEYS, Volume 8(2), June 1976, p. 191-276

3) Henry Ledgard and Michael Marcotty
A Genealogy of Control Structures
COMMUNICATIONS OF THE ACM, Volume 19(11), November 1976,
p. 601-608

4) Henry Ledgard and Robert Taylor
The Two Views of Data Abstraction (a special introduction)
COMMUNICATIONS OF THE ACM, Volume 20(6), June 1977,
p. 382-384

e

DI

5) Henry Ledgard and Andrew Singer
Formal Definition and Design =5
Presented at the 1977 Conference on-Information Sciences
and Systems, The Johns Hopkins University, Baltimore, MD

6) Frederic Richard and Henry F. Ledgard
A Reminder for Language Designers
To appear in SIGPLAN Notices, Winter 1977-78

7) Henry Ledgard and Andrew Singer
The Case for Research in Human Engineering
To appear in the Department of Defense Handbook on
Research Directions, September 1977
(revised version submitted to Communications of the ACM)

LIST OF PUBLICATIONS: In Progress at the end of Granting Period

8) Andrew Singer
Ph.D. Thesis, "Human Factors and Formal Definition"
(title has not been finalized)

This work shows the importance of formal
definition during the design process.

9) Henry Ledgard and Andrew Singer
Formal Definition and Design

(to be submitted to Computing Surveys)

This is an attempt to make a case for a substantial
redirection of formal definition techniques. The

basic case to be made is that formal definitions should
serve in the design of software much as an architectural
drawing serves in the design of a physical structure.

10) Andrew Singer, Henry Ledgard, and Jon Hueras

Software Design and the Human Interface

The work is an attempt to demonstrate the kind of
human engineering that can be done for software users.

CONFERENCES HELD:

ACM Conference on Data Abstraction, Salt Lake City, UT,
March 1976

1. INTRODUCTION |

Over the past decade the computer software area has faced
severe problems over the quality of software. Resulting systems
have often been plagued with poor performance, errors, and
frequent expensive modifications. The research reported here
was directed at one key element in the production of software:
the programming language.

During the granting period, three somewhat overlapping
approaches were explored.

1) the development of desired properties in languages, j

2) the development of new definition approaches and the
clarification of existing approaches,

ST

3) the emerging importance of the role of human factors a
in language design.

2. DESIRED PROPERTIES FOR HIGHER LEVEL LANGUAGES:

2.1 Control Structures: The first major accomplishment in

this area was on control structures. In past years there have

been perhaps hundreds of efforts treating this important issue.

While it may be argued that the control structure issue has been
entirely over worked, the importance of definitive works in this
area remains. Our basic approach to this problem was to analyze
all existing work, notably the theoretical work of Kosaraju, in
an attempt to distill a recommendation for a solution to the
control structure problem.

The basic result of our study was a deep-rooted and far-

reaching committment to the use of 1l-in, l-out control structures.

Lbn .
. oo S T T T e ——p—— r 4 e -

¢

-

—

One major realization during this period was that, from the
programmer's point of view, theoretical results based on the
conversion of one program form to another under restricted con-
ditions may not be of practical significance. After numerous
studies of existing work and many, many examples, we found the

case for higher order control structures unconfirmed. We have
concluded from both theoretical and practical work that 1l-in,

l-out control structures provide a solid basis for language design.
They provide tools for proper flow of control, and furthermore,

force the programmer to think ahead in devising clean solutioms.

This work was one of the cornerstones of our research and is

described in [3].

2.2 Laonguage Design Guidelines: On another front, a serious

attempt was made to distill a number of recommendations for the
design of languages. It is all too easy to make statements that
are not carefully supported. As a result of our general experi-
ence in the language area, we put together a set of guidelines
for language designers. These guidelines treat issues like the
overall complexity of a language, the design of function and
procedure facilities, the importance of program layout, the re-
dundancy of information and internal documentation. This work is

described in [6].

2.3 Asychronous Control Structures: During the course of

the research, two problems were studied and yielded no significant

results., The first was an investigation of asychronous control

r——

structures. It was our major assumption that the relaxation of
strict sequential flow of control in a conventional programming
language would considerably reduce some of the sources of com-
plexity in programming.

In this study we considered the separation between data flow
and the communication between modules via input-output buffers.
A small control language was defined for the description of the
interprocesses activities. The result of this investigation wac
that the asynchronous approach was more natural only for certain
classes of programs (such as simulation). In general, we had to
put much of our programming effort into organizing data flow in
order to get a good asynchronous solution. We also found that,
given a set of proposed program modifications, the asynchronous
solution was no better than the conventional top~down solution.
Our major conclusion is that the asynchronous approach has been
overrated, and in their present form are not generally suitable

for conventional languages.

2.4 A Measure of Syntactic Clarity: Another effort which

did not bear fruit was an investigation of syntactic clarity.
Using a variation of the LR(k) property for grammars, an attempt
was made to define a formal measure of syntactic clarity. An
abstract algorithm for computing this measure was devised. Using
the algoritim, experimental tests of the measure were carried out

by hand on two "mini-languages" and their variations.

While the results seemed promising, the algorithm did not
seem to be completely defined. The amount of effort necessary
to pursue the research further and the inherent difficulty in
getting a succgssful result motivated discontinuation of the |

work.

2.5 Data Abstraction: During the grant period a conference

on data abstraction was organized by myself and was held in Salt
Lake City. A paper resulting from this conference was part of a
1 issue of the Communications of the ACM devoted to the
nce [4]. From an organizational point of view, the con-
nce was a splendid success. It brought together key people
in the data abstraction area and led to a thoughtful and pleasant
exchange of ideas. From a research point of view, the conference
' exposed several problems with this area.
The computer sciences have seen many new developments with

exciting promise, followed by a slow follow-up as the details of

the problems result in ever increasing difficulties. This has

certainly been the case in the data abstraction area. Progress

has been slow, and it has come in small doses.

3. FORMAL DEFINITION

In the area of formal definition we feel that we have had
some great successes. Our major activity was on the use of formal

definition in the language design process.

—

3.1 The Sampler: This effort has rcsulted in a major paper,

"A Sampler of Formal Definition," which appeared in Computer

e

R e T i o —

Surveys [2]. This paper compares the use of VDL, Knuth's Attribute
Grammars, van Wijngaarden's W-Grammars, Hoare's Axiomatic Approach,
and my own Production System notation

This paper attempted to set a new standard for completeness
and readability in formal definitions. 1In addition, the paper
exposed the weaknesses of four major methods of formal definition.
Over the years to come we feel that the significance of this paper

will continue to grow.

3.2 Production Systems: One of the major formal definitions

in the above mentioned paper has been use of my own '"production
Systems,'" a new notation for defining computer languages. A paper
describing Production Systems was completed [l1]. Judging from the
work on the Sampler, Production Systems may have a bright future

in the development of quality languages.

3.3 The Role of Formal Definition: All of this effort

yielded a deepening insight into the proper uses of formal defini-
tion. We have come to believe that the major benefit for formal
definition is as a basis for detailed design of computer languages.

In a sense, the writing of formal definitions as a design tool
is programming at the very highest level. It provides a view of
the language from which design can proceed at a much more rapid
rate and most importantly, with a much higher quality.

Our cace for this issue has not been fully prepared and will
remain as unfinished business during the granting period. We
expect to resolve this situation by publishing a paper on our

views of formal definition in the very near future [9].

e TTe—

TIPS e

5. HUMAN FACTORS IN LANGUAGE DESIGN

During the closing months of the granting period, a new and
deep-rocoted committment was made to the area of human factors in
the language design process. The recent surge of research in the
area of software quality has concentrated on programming technol-
ogies, control structures, management of large systems, and re-
liability. All of these issues are aimed at producing better
quality programs; yet, none of them addresses directly the ﬁroblem
of producing programs that are easier to use. Surely, no one
would argue that the ease of use is not a factor in the '"quality"
of software.

In our work in human factors, two papers were completed.

The first entitled "The Case for Research in Human Engineering"

[7] is to appear in the Department of Defense Handbook on Research
Directions. This paper describes the problems in existing systems
and points out that there is no organized body of human factors
knowledge to guide language designers. The basic contention of

this paper is that a much preater priority must be given to research
in human engineering.

On another front, we have attempted to demonstrate by example
the kind of beautiful human engineering that can be done by software
engineers [10]. This work is still in progress and will remain as
unfinished business at the end of the granting period.

In any case, we are deeply committed to this area and feel

that the long range payoffs will be enormous.

